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Abstract

Dispersion of a passive solute in two phase flow through porous media has been studied by combining
three tools, namely reconstruction of porous media, Immiscible Lattice Boltzmann algorithm and random
walks. Plane Poiseuille flow has been solved analytically and it provides a useful comparison for the ran-
dom walk code. The influence of the P�eeclet number, of the water saturation and of the partition coefficient
has been determined for two different samples. Overall correlations are proposed to cover the variations of
the two first parameters. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of dispersion of a passive tracer in multiphase flow through a porous medium is a
difficult topic which has not received much attention in the past though it has a lot of practical
and fundamental interest. For instance, tracer analysis is currently used between wells to gain a
better understanding of the underground structure and of the flow pattern.

The contributions to dispersion studies in multiphase flow through porous media are not very
numerous to the best of our knowledge. The first one is Sahimi et al. (1982) which was later
summarized by Sahimi et al. (1983). Sahimi (1995) reviewed the early numerical contributions in
networks by Salter and Mohanty (1982), Sahimi et al. (1986) and Sahimi and Imdakm (1988).
Delshad et al. (1985) conducted a thorough experimental study in Berea sandstones and sand-
packs with two and three phase flows; this paper summarizes some of the previous experimental
studies; it shows that dispersion is a strong function of the preferential phase where the tracer is,
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of the saturation, of the porous medium and of surface tension; the data are analyzed in terms of
dispersivity which is the dispersion coefficient divided by the interstitial velocity. Recently, Chella
et al. (1998) investigated some theoretical aspects and performed some numerical applications in
elementary geometries with fixed interfaces.

Another source of results comes from hydrology and many theoretical, numerical and ex-
perimental investigations were carried out in the seventies in unsaturated porous media; for in-
stance, Smiles et al. (1978) used soils and De Smedt and Wierenga (1979) glass beads. Though it is
limited to diffusion, it is useful to cite the experimental study of Conca and Wright (1990) in
unsaturated gravel. Finally, Haga et al. (1999) conducted detailed tracer response experiments on
a packed bed of glass beads; the longitudinal dispersion coefficient was found to be proportional
to the product of the P�eeclet number and of the power �3.1 of the water saturation.

This paper is organized as follows. Section 2 is devoted to a short presentation of the basic tools
which are necessary for the determination of the dispersion tensor at the local scale. First, the pore
space is determined by means of the method of reconstructed media. Second, the instantaneous
phase distribution and velocity fields are obtained by means of an Immiscible Lattice Boltzmann
model. Third, the dispersion tensor is obtained by the random walk technique.

The simple case of plane Poiseuille flow is described in Section 3. This is the only geometry
where an analytical solution can be obtained. It is successfully compared with the numerical re-
sults derived by random walks.

The general situation of reconstructed media is addressed in Section 4. Results for two sets of
porous media, three values of the partition coefficient, three values for the P�eeclet number and four
values of water saturation are presented and discussed. Asymptotic values for long times of the
longitudinal dispersion coefficients are obtained by the Levenberg–Marquardt method. A few
overall correlations in terms of the P�eeclet number and of the water saturation are proposed.

2. General

Let us start by a general presentation of the determination of the dispersion tensor in two phase
flow; in most cases, the two fluids are oil and water denoted by the subscripts o and w. Consider a
solute which is diffusing while it is convected by a two phase flow; this solute has different diffusion
coefficients Do and Dw in the phases; moreover, it is characterized by a partition coefficient K
which is defined as being the ratio at equilibrium of the concentrations co and cw

K ¼ co
cw

ð1Þ

The determination of the dispersion tensor necessitates three tools which are going to be
presented in this section. First, a realistic representation of the porous medium is needed; it is
obtained by our classical technique of reconstructed porous media (Adler et al., 1990). Second, the
simultaneous flux of the two phases through the porous medium requests the resolution of
the Navier–Stokes equations in each phase supplemented by adequate boundary conditions at the
liquid–liquid interface and at the solid surface. This is achieved by using our Immiscible Lattice
Boltzmann code (Gunstensen, 1992; Ginzbourg and Adler, 1995). Third, convection–diffusion of
the Brownian solute is described by a convection–diffusion equation; except for the case of
Poiseuille flow, this will be solved by a random walk algorithm (Sall�ees et al., 1993).
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In this section, we shall briefly summarize these three tools. For sake of completeness, the
reader is referred to references with more complete presentations.

2.1. Reconstruction of porous media

The general principle of this technique consists of measuring statistical quantities on the real
material and to generate media with the same average properties. Here, these measurements are
performed on the digitized images of thin sections. Each section is described by a Lx � Ly matrix of
square binary pixels, which take the values 0 or 1 in the solid or pore phases, respectively. The
physical dimension of these pixels is denoted by p. This representation is a discrete definition of
the phase function

ZðrÞ ¼ 1 if r belongs to the pore space
0 otherwise

�
ð2Þ

where r denotes the position with respect to an arbitrary origin.
The porosity � and the correlation RzðuÞ can be defined by the statistical averages (which are

denoted by overbars)

� ¼ ZðrÞ ð3Þ

RZðuÞ ¼
ðZðrÞ � �Þ � ðZðrþ uÞ � �Þ

�ð1� �Þ ð4Þ

For isotropic materials, RZ is a function of the modulus of the lag u ¼ kuk only, RZðuÞ ¼ RZðuÞ.
Otherwise, the correlations for u parallel to the x- and y-axes are denoted RZx and RZy, respectively.
Notice that �ð1� �Þ in Eq. (4) equals var(Z) since ZnðrÞ ¼ ZðrÞ.

These two quantities can be measured on a thin section by image analysis. The porosity is
obtained by averaging. The increment u was varied by steps of one pixel. The correlation lengthL
is defined as the integral of the correlation function

L ¼
Z 1

0

RZðuÞdu ð5Þ

For anisotropic materials, Lx and Ly are defined accordingly from RZx and RZy.
The reconstruction method of three-dimensional random media consists of generating three-

dimensional random porous media with a given porosity � and a given correlation function; the
medium is homogeneous and isotropic, but this last property is not essential. This technique has
been fully described by Adler et al. (1990); recent developments have been summarized by Adler
and Thovert (1998) and Thovert et al. (2001).

For practical purposes only, the porous medium is constructed in a discrete manner. It is
considered to be composed of N 3

c small cubes, each of the same size a. These elementary cubes are
filled either with void or with solid. Moreover, the generated samples are unit cells of infinite
spatially periodic media, a feature which will be convenient for the determination of the transport
properties.
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2.2. Two-phase flow (immiscible lattice Boltzmann models)

The motion of each fluid phase is computed with a classical Immiscible Lattice Boltzmann code
(often denoted by the initials ILB) which was originated by Gunstensen (1992). It consists of
Boltzmann equations supplemented by perturbation of populations near the interface in order to
introduce surface tension; the separation of phases is performed in the same manner as in ILG
models.

The algorithm has been thoroughly described by Ginzbourg and Adler (1995). It can be briefly
summarized as follows. It is divided into five major steps. In the first step, the fields at time t such
as the densities and the velocities are derived. In the second step, the collisions of the total
populations are calculated by means of the Boltzmann equations. In the third step, surface tension
is introduced and the color gradient is determined. In the fourth step, the total population is
recolored in order to separate the two populations. Finally, propagation of the populations is
achieved.

The wetting properties can be implemented in a very flexible way in ILB codes. Each surface
element which belong to Sp is given an arbitrary color; this corresponds to the fact that the surface
element is wetted by the phase of the same color. Hence, each element can be colored indepen-
dently of its neighbors.

At a time ti, one can compute the spatial averages of the velocities of each phase vk, namely the
seepage velocity. The instantaneous relative permeability KrkðtiÞ of the phase k is defined by

vkðtiÞ ¼ �KrkðtiÞK
lk

rp ð6Þ

where K is the absolute permeability.
The instantaneous capillary pressure is defined as the instantaneous spatial average difference in

pressure of the two phases

PcðtiÞ ¼ P1ðtiÞ � P2ðtiÞ ð7Þ

where 1 and 2 are the non-wetting and the wetting phases, respectively. It can in some cases for
very low velocities be taken as a function of the water saturation. Furthermore, the capillary
number is defined as

Ck ¼
lkjvkj

r
ð8Þ

In the results from the Lattice–Boltzmann simulation the relative permeabilities, the capillary
pressure and the capillary numbers are calculated for a series of N times ti. The time averages
values are indicated by brackets h i; the average is a moving average in the sense that only the last
N points are used. For instance, the average real permeabilities are given by

hKrki ¼
1

N

X
i¼1;N

KrkðtiÞ ð9Þ

Usually, these average relative permeabilities are assumed to be functions only of the saturation
of water Sw (or equivalently of So ¼ 1� Sw)
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hKrki ¼ KrkðSwÞ ð10Þ

2.3. Convection–diffusion in two phase flow

2.3.1. Theoretical background in single phase flow
Dispersion is motion under the simultaneous influence of convection and diffusion. A complete

analysis of this question can be found in Brenner (1980), Adler (1992) and Sall�ees et al. (1993).
Consider Brownian particles injected into a fluid and for sake of simplicity, let us start with the
simple case of a single phase fluid which is incompressible. The concentration field of the particles
is governed by the convection–diffusion equation

oc
ot

þ v � rc� Dr2c ¼ 0 ð11Þ

where c is the local solute concentration, v the local velocity, and D the diffusion coefficient.
Alternatively, one can consider the particles individually; let riðtÞ be the position of particle i.

One can define the first and second moments of the population of particles

M1 ¼ hri ð12aÞ
M2 ¼ hrr� hrihrii ð12bÞ

In these formulae, h�i denotes a statistical average over the Brownian particles; for instance,

hri ¼ 1

N

XN
i¼1

riðtÞ ð12cÞ

where N is the total number of particles. The physical meaning of these two moments is clear; the
first one corresponds to the center of gravity of the cloud of particles, the second to the square of
the diameter of this cloud.

Hence, the time derivative of M1 corresponds to the velocity of the centre of gravity of the
cloud for sufficiently long times; by analogy with the standard Brownian motion, the time de-
rivative of M2 corresponds to the dispersion tensor D�, again for sufficiently long times. More
precisely,

lim
t!1

dM1

dt
¼ v�c ð13aÞ

lim
t!1

1

2

dM2

dt
¼ D� ð13bÞ

These two quantities are of crucial importance since they are the ones which appear in the large
scale transport equation.

v�c is called the mean velocity vector of the tracer particle which is, for a single phase flow
without reaction, equal to the interstitial velocity v� and related to the seepage velocity v by

v�c ¼ v� ¼ v

e
ð14Þ

The dispersion tensor is a symmetric positive tensor. For isotropic media, where flow is parallel
to the x-axis, D� can be decomposed into its parallel and perpendicular components
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D� ¼
D�

k 0 0
0 D�

? 0
0 0 D�

?

8<
:

9=
; ð15Þ

In single phase flow, the dispersion tensor is not usually determined by the random walk
technique which is very expensive numerically. Rather the so called B-equation is used where B is
a vector field solution of a stationary convection–diffusion equation with a second member (cf.
Brenner, 1980).

Dispersion is dependent on many parameters. The relative influence of convection versus dif-
fusion greatly affects the magnitude of the dispersion tensor. The convection/diffusion ratio is
represented by the P�eeclet number where

Pe ¼ jv�jl
D

ð16Þ

The P�eeclet number can be varied by altering the interstitial velocity jv�j, or the diffusion coefficient
D. In this study, the local velocity will be generally held constant and the P�eeclet number will be
fixed by the diffusion coefficient.

2.3.2. Dispersion in multiphase flow
In multiphase flow, the problem is more complex than in single phase flow since the configu-

ration of the phases is not constant with time. The technique of the B-equation could be adapted
to such a situation, but numerical difficulties would be created by the simultaneous use of the ILB
code and of a finite volume code. In contrast, the random walk method is relatively easier to
implement though it is computationally expensive.

Physically, the tracer is characterized by two diffusion coefficients Dw and Do in water and oil,
respectively. Moreover, in a state of thermodynamic equilibrium, the concentrations of particles
in the two phases are generally different one from another. This concentration ratio is equal to the
partition coefficient K. This dimensionless constant representing the ratio of the number of
Brownian particles in oil to the number of Brownian particles in water, can be expressed by Eq.
(1).

However, macroscopic quantities such as the moments of the particle populations, the mean
solute velocity v�c and the dispersion tensor D� can be defined exactly as for single phase flow, i.e.,
according to Eqs. (12a)–(13b). Hence, because of the partition coefficient and of the complex
nature of the flow, v�c is definitively different from the average velocity.

In multiphase flows, the overall interstitial velocity v� can be defined in the following way for a
large volume V

v� ¼ 1

�ðVo þ VwÞ

Z
Vo

voðtÞd3r



þ
Z

Vw

vwðtÞd3r

�
¼ vo þ vw

�
ð17Þ

where Vo and Vw are the portions of the volume V occupied by oil and water, respectively.
Hence, the random walk technique has been chosen in order to determine these macroscopic

quantities. This is not by any means a simple problem and the following difficulties were to be
solved
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(i) the problem of different diffusion coefficients in each phase,
(ii) the moving interfaces,
(iii) the definition of the velocity field in the ILB code.

These difficulties have been overcome and a program which works satisfactorily well was finally
issued and will be presented in Section 2.3.4.

Let us end this introductory section by some notations. Phase 1 will correspond to oil, and
phase 2 to water.

2.3.3. Random walks in multiphase flow
The transport by convection and diffusion of the particles suspended in two phase flow can be

simulated by random walks. In this method, the trajectories of numerous tracers are followed
individually. At time zero, a large number Np of particles is released in the pore space. In order to
speed up statistical convergence, the particles are released with a probability density proportional
to the equilibrium concentration Ceq

a in the phase a. At each time step, the velocity field and the
phase configuration are determined by the ILB method. Then during this time step of duration
dta, the position ri of the ith particle is incremented during the time step dta by dia

dia ¼ vðriÞdta þ dda ð18Þ

which is the sum of two terms. The term vðriÞdta in Eq. (18) corresponds to the convective dis-
placement of the particle in the phase a � dda is a random displacement due to molecular diffusion.
Its modulus da is related to the diffusion coefficient Da by

Da ¼
d2

a

6dta
ð19Þ

The direction of the jump dda is chosen at random with a random number generator.
It can be shown that the probability that a particle hits an interface during a single random

displacement is proportional to the length of the displacement di. Hence, the time rate of particles
hitting an interface is proportional to di=dti. According to Eq. (1), the time rate of particles on the
oil side is equal to K times the one of the water side and one obtains the following condition

d2

dt2
¼ K

d1

dt1
ð20Þ

Thus, the elementary diffusive displacement in the oil phase d1 is related to the water one d2 by

d1 ¼
D1

D2

Kd2 ð21Þ

The relation between the two time steps is thus given by

dt1 ¼
D1

D2

K2dt2 ð22Þ

The same problem has been solved in different ways by Tomadakis and Sotirchos (1996) and
Labolle et al. (1996).
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In order to keep the elementary jump dia reasonably small, dta is adjusted so that da is as large as
possible for a given P�eeclet number; this speeds up the statistical convergence; the following
condition is imposed

jdiaj6 dM ð23Þ

where dM is the magnitude of the maximum modulus of the elementary jumps dri. This parameter
is crucial. It was set to half of the size of the elementary cubes

dM ¼ a=2 ð24Þ

This value was found to yield the best compromise between accuracy and computational time.
The time step dt1 (i.e., dt2) is related to the maximum jump dM by

dM P v1maxdt1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6D1dt1

p

dM P v2max
D2

D1
K2dt1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

D2
2

D1
K2dt1

q(
ð25Þ

When a particle reaches an interface, it stops and the elapsed time to arrive at this interface is
recorded. The remaining time is used in the subsequent step with the physical parameter of the
new phase. So the following directed step is calculated with the velocity and the random diffusion
displacement according to the diffusion coefficient of the new phase. This following step may point
into the new or old phase; if it points in the old phase, the particle does not leave the interface and
the procedure is resumed until the particle stays in the chosen phase.

2.3.4. General organisation of the code
In order to summarize the previous developments, the code has been schematized in Fig. 1. All

the calculations are done in the ILB units (cf. Ginzbourg and Adler (1995) for details); for in-
stance, the unit length is equal to the size a of the elementary cubes and the unit time is the el-
ementary time step of the ILB code.

First, input quantities are read such as the geometry of the medium, the physical constants and
the dimensionless parameters.

An important quantity is the water saturation Sw which is kept constant for a given run. Since
the phase configuration is a priori unknown, the ILB code starts from a given initial configuration
which is usually made of two successive slices of oil and water as displayed in Fig. 9a. An overall
pressure gradient rp is imposed on both fluids.

Because of the spatially periodic boundary conditions, the fluids never leave the unit cell and
the saturation is constant. It is important to note that one cannot speak in our simulations of
drainage or imbibition conditions.

The ILB code is run without any dispersion until stationary conditions are reached. Note that
the phase configuration will always keep changing with time. This point will be illustrated in
Section 4.2.

Then the random walks are started. In order to be as close as possible to equilibrium, the
particles are initially distributed at random in each phase, but the proportions indicated by the
partition coefficient 1 are fulfilled. At each time step, each particle is moved according to Eq. (18)
where the velocity field is provided by the ILB code. The ILB code is used again to determine a
new phase configuration and a new velocity field.
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Every several steps, the macroscopic quantities which characterize dispersion, namely the two
first moments are computed. It is important to not that a stationary configuration would be a
rough approximation of what is actually going on.

Finally, the code is stopped when the dispersion tensor has reached a stationary value.

3. Poiseuille flow: analytical

Poiseuille flow is an idealized situation where flow is one-dimensional with no slip boundary
conditions at the walls. This elementary flow is often used as it is the only one for which an
analytical solution to the Navier–Stokes equation can be obtained. In this study, the theoretical
results obtained for Poiseuille flow will be compared with actual numerical data. It also gives us
the opportunity of using the technique of the B-equation.

3.1. Single phase Poiseuille flow

Consider two parallel at plates where flow is parallel to the x-axis; the y-axis is perpendicular to
the plates as shown in Fig. 2a. When the pressure gradient is parallel to the x-axis, the Navier–
Stokes equation reduces to its most basic form

l
d2u
dy2

¼ dp
dx

ð26Þ

whose solution is

Fig. 1. General organization of the code.
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u ¼ 1

l
dp
dx

yðH � yÞ ð27Þ

where dp=dx is a given constant.
The dispersion tensor can be determined by using the method of the B-equation due to Brenner

(1980). The field B can be shown to be a solution of a vectorial convection–diffusion equation

D � r2B �r � ðvBÞ ¼ v�c
n � rB ¼ 0 on the wall
½B� ¼ �½r�
½rB� ¼ 0

8>><
>>: ð28Þ

The dispersion tensor D� can be expressed as

D� ¼ D
sf

Z
sf

rD�y � rBd3r ð29Þ

where sf is the volume of the unit cell.
As Poiseuille flow corresponds to a one dimensional problem, the previous partial differential

equation reduces to a quadrature. B is reduced to its longitudinal component Bx and D�
xx is recalled

to be

D�
xx ¼ D 1



þ Pe2

210

�
ð30Þ

where Pe is given by Eq. (16) with l ¼ H .

Fig. 2. Poiseuille flow for one (a) and two (b) phases between two planes.
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3.2. Two-phase Poiseuille flow by the B-equation

The physical situation for two phase Poiseuille flow is represented in Fig. 2b. Similar to the case
of a single phase, the Stokes equation reduces to a one dimensional problem. y0 is the vertical
reduced coordinate

y0 ¼ y
H

ð31Þ

The interface is located at y0 ¼ 1� Sw. The two phases are denoted by the indices 1 and 2, or o and
w, respectively. The velocities of both phases can be written as

v1
v0

¼ 6y 0ð1� y 0 þ AÞ l2

l1

ð32aÞ

v2
v0

¼ 6ðy0 � AÞð1� y0Þ ð32bÞ

where v0 (which is the overall interstitial velocity defined by Eq. (17)) and A are given by

v0 ¼
H 2

12

1

l2

dp
dx

ð32cÞ

A ¼ Swð1� SwÞðl1 � l2Þ
l2 þ Swðl1 � l2Þ

ð32dÞ

Thus, the average velocities of both phases are given by

v1
v0

¼ l2

l1

ð1� SwÞ2½3ðAþ 1Þ � 2ð1� SwÞ� ð33aÞ

v2
v0

¼ S2
wð3� 3A� 2SwÞ ð33bÞ

Note that in this situation, there is no need to distinguish between interstitial and seepage
velocities since one is interested by a single channel and the porosity is equal to 1, so to speak.

In a two-phase Poiseuille flow where the interface does not change position, the B-field method
can be easily extended. The right-hand side of Eq. (28) must be generalized to the interstitial
velocity v�c of the solute with a partition coefficient K

v�c ¼
Kvo þ vw

Kð1� SwÞ þ Sw
ð34Þ

Moreover, the B-fields in the oil and water phase satisfy the same equation as before, but with
additional conditions at the interface whose unit normal vector is n

Dk � r2Bk �r � ðvkBkÞ ¼ v�c ; k ¼ o;w
n � rBk ¼ 0 on the wall
Bo ¼ Bw; Don � rBo ¼ Dwn � rBw at the interface
½B� ¼ �½r�
½rB� ¼ 0

8>>>><
>>>>:

ð35Þ
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Because of the translational symmetry of the plane Poiseuille flow, the B-equation (35) implies

D1

H 2

d �BB1x

dy 0
¼ v�cy

0 þ v0
l2

l1

y02½2y0 � 3ð1þ AÞ� ð36aÞ

D2

H 2

d �BB1x

dy 0
¼ v�cy

0 þ v0y 02½2y0 � 3ð1þ AÞ� þ 6v0Ay0 þ v0ð1� 3AÞ � v�c ð36bÞ

where �BBKx is the spatially periodic part of BKx

�BBKx ¼ BKx þ x ð36cÞ
Consequently, the dispersion tensor (29) can again be defined in terms of �BBx, the spatially

periodic component of the B-field along the x-axis. The modification of Eq. (30) to incorporate
two phases yields

½Kð1� SwÞ þ Sw�D�
xx ¼ KD1ð1� SwÞ þ D2Sw þ H 2

D1

K
Z 1�Sw

0

D1

H 2

d �BB1x

dy 0

 !2

dy 0

þ H 2

D2

Z 1

1�Sw

D2

H 2

d �BB1x

dy 0

 !2

dy 0 ð37Þ

where D1 and D2 are the diffusion coefficients in the two phases.
These cumbersome quadratures can be performed analytically. If we define an equivalent

diffusion coefficient D by

D ¼ Kð1� SwÞDo þ SwDw

Kð1� SwÞ þ Sw
ð38Þ

and an overall P�eeclet number Pe by

Pe ¼ v�cH
D

; ð39Þ

the macroscopic diffusion coefficient D�
xx can be expressed under the same general form as single

phase flow in a plane channel

D�
xx ¼ D 1

"
þ Pe

2

210
Fd

lw

lo

;
Do

Dw

; Sw;K

 �#

ð40Þ

This expression is interesting in the sense that it separates the effect of the flow strength corre-
sponding to the P�eeclet number and the influence of the other dimensionless parameters. Because
of this separation, it was found useful to use D to normalize the macroscopic diffusion coefficient
D�. The full expression of Fd is given in Appendix A. Note that the viscosity and the diffusion
coefficients have been treated in some of the following examples as independent parameters and
that no use has been done of the Einstein relationship which relates the diffusion coefficient to
viscosity.

Some systematic applications have been made of these analytical formulae in order to illustrate
them. Numerical results corresponding to these analytical expressions are represented in Fig. 3.
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This figure gives an overall view of the variations which are interesting since they are not mo-
notonous. Note that for some values of the parameters, Fd tends towards one.

3.3. Two-phase Poiseuille flow by random walks

The numerical code has been first used in Poiseuille flow in order to check the random walk
algorithm.

The general conditions are H ¼ 10a, Sw ¼ 50% and (Ncx ¼ 12, Ncy ¼ 4, Ncz ¼ 1).
First, it was found important to check the influence of the partition coefficient in a motion less

fluid. Such situations are displayed in Fig. 4. Initially, all the particles are put in fluid 2; they
undergo diffusion and after some time, it is seen that the resulting partition coefficient is very close
to its theoretical value. Of course, statistical fluctuations remain and they are expected to be of the
order of 1=

ffiffiffiffi
N

p
, where N is the number of particles. Since N is equal to 1000, it is seen that the

fluctuations are in agreement with this order of magnitude.

Fig. 3. Analytical variations of Fd ¼ ðD�
xx=D � 1Þ210=Pe2 with Sw, lo=lw, Dw=Do and K; plane Poiseuille flow––in (a)

Sw ¼ 0:5 and lo=lw ¼ 10, (b) Sw ¼ 0:5 and Dw=Do ¼ 10, (c) lo=lw ¼ 10 and Dw=Do ¼ 10.
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Then, dispersion was studied in two-phase Poiseuille flows for a saturation equal to 0.5 and for
various values of the partition coefficient, of the ratios of the diffusion coefficients and of the
viscosities

Dw

Do

¼ 0:1; 1; 10 for K ¼ 0:1;
lw

lo

¼ 0:1; Pe ¼ 100

Dw

Do

¼ 0:1; 1; 10 for K ¼ 1;
lw

lo

¼ 0:1; Pe ¼ 100

Dw

Do

¼ 0:1; 1; 10 for K ¼ 1;
lw

lo

¼ 1; Pe ¼ 100

ð41Þ

The instantaneous positions of the particles are displayed in Fig. 5. The general trends are as
expected, namely the clouds of particles are carried by the fluids and simultaneously their size
increases. It is particularly interesting to note that even when the viscosity ratio of the two phases
is equal to 10, the two clouds of particles in each phase remain very close one to another. This
means that the transversal exchanges between the two fluids act against the separation of the
solute in each phase, despite the possible large velocity difference. It is interesting to note that this
behavior is somehow contrary to what was expected on an intuitive basis.

Fig. 4. Brownian motion of particles in a motionless two-phase fluid. The particles are initially put in fluid 2 located in

the half-left of each figure. The particles located in fluid 2 are represented as bold dots. Each line corresponds to a given

partition coefficient and a given ratio of the diffusion coefficients; the left and right columns correspond to a transient

state and to equilibrium, respectively.
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The positions of the particles can be used to derive the dispersion coefficient D�
xx according to

Eq. (13b). Some results are given in Fig. 6. After an initial period where transient values are

Fig. 5. Time evolution of Brownian particles dispersing in a two phase oil/water mixture in a two-phase Poiseuille flow.

The particles located in the oil phase are represented in gray. Data are for: Sw ¼ 50%, lw=lo ¼ 0:1 and Pe ¼ 100.
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obtained, the dispersion coefficient fluctuates around an average value; the fluctuations are
roughly proportional to the value of the dispersion coefficient.

The numerical results are found in agreement with the analytical results as displayed in Table 1.
Note that other results have been obtained when the two fluids have the same properties and
behave as a single fluid. It is seen that the error is always smaller than 10%. To conclude, it
appears that our code works satisfactorily.

4. Dispersion in reconstructed porous media

4.1. Range of studied parameters

Two series of images were provided to us by Saga and Statoil on which the reconstructed
porous media were based. Let us briefly comment on this step.

Fig. 6. Time evolution of the dispersion coefficient ððD�
xx=D � 1Þ210=Pe2Þ � Fd for a plane Poiseuille flow of a two phase

oil/water mixture. The following coefficients were kept constant: Sw ¼ 50%, Pe ¼ 100 and lw=lo ¼ 0:1. Data are for: 1

(K ¼ 0:1 and Dw=Do ¼ 10); 2 (K ¼ 0:1 and Dw=Do ¼ 1); 3 (K ¼ 0:1 and Dw=Do ¼ 0:1); 4 (K ¼ 1 and Dw=Do ¼ 10); 5

(K ¼ 1 and Dw=Do ¼ 1); 6 (K ¼ 1 and Dw=Do ¼ 0:1).

Table 1

Comparison between numerical and analytical dispersion coefficients in Poiseuille flow

Dw=Do K Num. Anal. Error (%)

0.1 0.1 7.76 7.53 3

0.1 1 24.4 24.2 1

1 0.1 86 81.8 5

1 1 185 181.3 2

10 0.1 1747 1589 10

10 1 1378 1288 7

Data are for: lw=lo ¼ 0:1 and Pe ¼ 10.
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The data set SAGA consisted of nine binary images sa1865. Five images were taken for each
sample in both x- and z-directions, i.e., 10 images per sample, labeled x1 to x5 and z1 to z5. Two
binary images are displayed in Fig. 7.

The data set STATOIL consisted of binary images from several samples, labeled sb, sd and sf.
This core did not show any lamination, hence only thin sections in one direction were cut. Five
images were taken for each sample, labeled 1–5. Two binary images are displayed in Fig. 8a.

Homogeneity and isotropy verifications were done according to our standard techniques (cf.
Adler and Thovert, 1998) and some images were rejected.

The averages of the correlation functions over the retained images are given in Figs. 7c and 8c.
The average properties used for the generation of the reconstructed samples are summarized in
Table 2. The reconstructed samples are made of 483 or 643 elementary cubes of size a, entirely
filled with either solid or void. The cube size a was set equal to twice the pixel size on the original
images. N ¼ 8 or 10 samples were reconstructed in each case. The geometrical characteristics of
the reconstructed samples (porosity �, open porosity �0, and correlation length L) are given in
Table 2, in comparison with the experimental data. The correlation functions of the reconstructed
media are compared to the experimental ones in Figs. 7c and 8c. The porosities and correlation
lengths of the reconstructed samples are always very close to their experimental values. The
correlation functions measured on the images and on the simulated materials are also in very good
agreement. All the reconstructed samples percolate along the x-, y- and z-axes. The open and total

Fig. 7. Sample sa1865. The binary images sa1865x1t and sa1865z1t are displayed in (a) and (b); the image dimensions

are 5:7� 4:5 mm2. (c) The correlation functions measured on the image is compared to the one measured on the re-

constructed media; the lag is in microns.
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porosities are very similar. The closed porosity �c ¼ �� �o is smaller than 0.008 for SAGA and
than 0.005 for STATOIL.

Let us now present the set of calculations which was started in this study. In order to limit the
number of computations, a few physical parameters were kept fixed. These are the following
(given in lattice units)

1. The viscosities of the two fluids are mo ¼ 1:5, mw ¼ 0:15.
2. The interfacial tension was chosen to be r ¼ 5:5� 10�3.
3. The ratio between the diffusion coefficients is equal to Do=Dw ¼ 0:1.

Fig. 8. Sample sd. The binary images sd1t and sd2t are displayed in (a) and (b); the image dimensions are 2.3�1.8 mm2.

(c) The correlation functions measured on the image is compared to the one measured on the reconstructed media; the

lag is in microns.

Table 2

Geometrical parameters for the samples from experimental measurements and from numerical simulations

Image Experimental Simulation

�exp Lexp ðlmÞ Nc a N ��� ���0 L ðlmÞ
sa1865 0.267 95.76 64 22.40 8 0.267 (0.09) 0.261 (0.10) 98.291

sd 0.371 32.1 48 8.96 10 0.365 (0.16) 0.363 (0.16) 34.0

64 8.96 10 0.371 (0.06) 0.369 (0.06) 34.0

Numbers in parenthesis are standard deviations.
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4. The pressure gradient is set along the x-axis. One value is used jrpj ¼ 2� 10�3. It can be varied
provided that it is not too large.

5. Water (phase 2) is supposed to preferentially wet the walls as indicated below. This parameter
can be varied at will.

6. Periodic boundary conditions are used at the ends of the unit cell; this is a convenient and stan-
dard way to proceed.

7. The computations have been started for two reconstructed samples denoted by Saga 1865 and
Statoil sd. Initial computations have been limited to these two samples since the algorithms are
quite long and since the final number of independent parameters is quite large. The porosities of
these two samples are equal to 0.27 and 0.37. These reconstructed samples are selected by check-
ing the porosity and the correlation function. These numerical samples are relatively small since
they contain 40 elementary cubes along each direction. The cube size was set equal to twice the
pixel size. Hence, the physical sample size is ð0:36 mmÞ3 for Statoil sd and ð0:90 mmÞ3 for Saga
1865.

Then, three parameters were sytematically varied as displayed in Table 3, namely the partition
coefficient which takes three values, the saturation and the P�eeclet number. Note that constant
values of this last number were obtained by varying each diffusion coefficient, while keeping a
given ratio between the phases.

4.2. Porous media and general transport properties

When a two-phase mixture is flowing through a porous medium, the geometry of the interface
between the two fluids changes constantly. This situation is illustrated in Fig. 9. As stated in
Section 2.3.4, the two fluids are initially placed in two slices perpendicular to the average pressure
gradient. Spatially periodic boundary conditions are used and the fluid which goes out of the cell
through one side, goes back into it through the opposite side. In order to have a better view on the
liquid phases, the solid phase has been removed. After some time, i.e., 2� 105 iterations, the

Table 3

Set of physical parameters for numerical calculations in reconstructed media

Saturation 20% 40% 50% 60%

Pe ¼ 0:1 K ¼ 1 � � � �
K ¼ 10 � � � �

Pe ¼ 1 K ¼ 0:1 � � � �
K ¼ 1 � � � �
K ¼ 10 � � � �

Pe ¼ 10 K ¼ 0:1 � � � � � � � �
K ¼ 1 � � � �
K ¼ 10 � � � �

Pe ¼ 100 K ¼ 0:1 � � � � � � � �
K ¼ 1 � � � �
K ¼ 10 � � � �

Data are: (�) for Statoil sd and (�) for Saga 1865.
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general shapes of the domains occupied by the two phases are roughly constant; in particular a
sort of large channel has been created in the middle of the sample; however, when some attention

Fig. 9. Three-dimensional illustration of the phase distributions for various times in sample Saga 1865. Sw ¼ 50%. The

pressure gradient is along the x-direction and the fluids flow from the back to the front. Color conventions are: oil

(gray), water (black); the solid is omitted in all the pictures, except in the last one where it is white, but opaque.

684 S. Bekri, P.M. Adler / International Journal of Multiphase Flow 28 (2002) 665–697



is paid to details, it is seen that these shapes are constantly changing even after long periods of
time.

In the last picture of Fig. 9, the solid phase has been represented again after a large number of
iterations. The influence of the wettability is clearly seen in these pictures since water is mostly
located at the walls. Other computations for different samples yield the reverse situation when oil
is the wetting phase.

Macroscopic quantities such as the permeabilities Kw and Ko and such as the capillary pressure
pc ¼ po � pw can be derived by integrating the local velocity and pressure fields over the unit cell.
Instantaneous quantities can be obtained, but also time-averaged ones; the latter actually cor-
respond to what is needed in the large scale simulators. Results are given in Fig. 10 for some
permeabilities for the two samples and for the various saturations which were studied. This set of
results can be briefly commented as follows. The arbitrary initial distribution generally implies a
fast decrease of the macroscopic quantities during the first iterations; in a few opportunities, one
has a slight increase (see Fig. 10d, Sw ¼ 40% for instance). The instantaneous fluxes are seen to be
random in character with time. However, when the permeabilities are time-averaged, they tend
towards constant values after a large number of iterations which depends on the sample and on
water saturation. Sometimes for Sw ¼ 20%, water permeability does not seem to converge; this
impression is due to the vertical logarithmic scale; Kw is indeed very small, if not equal to zero for
practical purposes.

The capillary numbers defined by Eq. (8) are relatively high for this set of numerical experi-
ments. In the Saga set of calculations, Co is of the order of 10

�3, while Cw ranges from 10�3 to 10�4

(except for Sw where it is equal to 10�7Þ. In the Statoil set, So is about 10�2 and Sw ranges between
10�4 and 10�3.

The permeabilities of the samples Saga 1865 and Statoil sd are presented in Table 4. Note that
the permeabilities display expected trends with saturation variations. The fact that the oil relative
permeability is larger than 1 is mostly due to the large value of the capillary numbers; it is also due
to the large viscosity ratio and to the fact that water is the wetting phase; a ratio closer to 1 would
yield a value of Kro smaller than 1 as shown by B�eekri et al. (in preparation). As noticed earlier, the
saturations are imposed and do not depend on the capillary number; hence, the process is neither
imbibition, nor drainage.

The effect of the size of the unit cell has not been systematically studied, but it was shown by
B�eekri et al. (in preparation) that the influence of the size on permeability was not too important.

4.3. Dispersion

The definition (13b) was applied for finite times in order to obtain a dispersion tensor which is
function of time

D�ðtÞ ¼ 1

2

dM2

dt
ð42Þ

For sake of keeping simple notations, the dependence on time is often omitted in the following.
It might be useful to emphasize that dimensionless expressions of the dispersion tensor D�=D a

priori depend on many dimensionless parameters. The expression (40) obtained for Poiseuille flow
can be easily generalized as
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Fig. 10. Time evolution of the instantaneous (a)–(d) and time average (e)–(h) permeabilities Ka [Darcy] in the samples

Saga 1865 (left column) and Statoil sd (right column). Data are for: water wets; jOpj ¼ 2� 10�3; Sw ¼ 20%, 40%.
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D�

D
¼ D�

D
Pe;

lw

lo

;
Do

Dw

; Sw;K;G

� �
ð43aÞ

where the P�eeclet number Pe for reconstructed media is defined as

Pe ¼ v�L
D

ð43bÞ

where L is the correlation length Eq. (5) and D the diffusion coefficient used in the Poiseuille
formula (38). It was found useful to use this expression which is theoretically justified. Moreover,
no phase is arbitrarily privileged by this choice and it takes into account the variations of Sw and
K. For instance, one obtains the right limits when Sw ¼ 0 or 1, and when K ¼ 0;1.

Finally, the symbol G represents the geometry of the porous medium. Here, G corresponds to
the porosity � and the correlation function RZðuÞ. Like the other macroscopic properties such as
the conductivity and permeability, D� reflects at least partly the geometry of the medium.

The dispersion tensor is separated into its parallel and perpendicular components. With our
present notations, the average pressure drop is directed along the x-axis; thus, this implies that the
parallel component is denoted by D�

x and the two perpendicular components by D�
y and D�

z . Figs.
11 and 12 represent some time evolutions of D� along the xyz-axes in both samples. These figures
are only a brief illustrative abstract of the large set of results that we obtained for all the pa-
rameters listed in Table 3.

Note that by dividing the dispersion tensor D� by the P�eeclet number Pe, one obtains a relation
which is almost linear. Hence, multiphase flows through porous media yield results very similar to
single phase Poiseuille flow where D�=Pe is a linear function of the P�eeclet number.

Generally speaking, it is seen for all the P�eeclet numbers that the transversal components are
much smaller than the longitudinal one; this is a fact which is also true in single phase flow. It is
interesting to note that D�

y and D�
z are of the same order of magnitude as they should since the

samples are statistically isotropic.
Whatever the value of time and the location within the computing process, most of the fluc-

tuations are probably due to the changes in the phase configurations. Since the unit cells are
relatively small, the fluctuations are not sufficiently averaged.

Let us first discuss the time dependency of the results displayed in these two figures. Three
regions can be distinguished for the sake of clarity. In the initial phase, the effect of the transient
distribution of the phases is clearly seen; there is no general rule since sometimes the dispersion
coefficient undergoes a sudden increase or a sudden decrease. It might be useful to recall that the
solute has been distributed initially according to the partition coefficient; hence, the transient
cannot be attributed to a redistribution of the solute. For large times, it is seen that some as-
ymptotic values are hard to obtain, especially for the longitudinal component, for large Pe and

Table 4

Permeabilities K[Darcy] along the x-axis for Saga 1865 and Statoil sd

Sample Sw ¼ 20% Sw ¼ 40% Sw ¼ 50% Sw ¼ 60% Sw ¼ 100%

Saga Ko 11 10 9.7 6.7 3.2

Kw 0.00021 0.0078 0.098 0.59 3.2

Statoil Ko 26 22 18 15 11

Kw 0.042 0.96 1.7 2.7 11
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Fig. 11. Time evolution of dispersion coefficients normalized by D and Pe in the sample Saga 1865. Data are for

jOpj ¼ 2� 10�3, Sw ¼ 60% and water phase wets the walls. The dotted line in the left row corresponds to Eq. (44).
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Fig. 12. Time evolution of dispersion coefficients normalized by D and Pe in the sample Statoil sd. Data are for

jOpj ¼ 2� 10�3, K ¼ 0:1 and water phase wets the walls. The dotted line in the left row corresponds to Eq. (44).
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for large values of the partition coefficient (i.e., when the solute is mostly in the oil phase). For
intermediate times, some short time fluctuations are always added to the long term behaviour of
the dispersion coefficients.

Let us now discuss qualitatively the influence of the other parameters. The role of the P�eeclet
number is quite obvious; as in single phase flow, D� is an increasing function of this parameter.
The partition coefficient K has a similar in influence; however, it should be reminded that in our
case, water is the wetting phase, and that it has been shown to remain confined close to the walls
(cf. Fig. 9); a very different behaviour would probably be obtained in the opposite situation.

The last important parameter which has been systematically studied is Sw; it is interesting to
note that in some cases, it may yield either an increase or a decrease of the dispersion tensor. This
important feature will be fully documented in the next subsection.

Another crucial feature is the fact that the two samples have quite different behaviors; this
might be due to the different phase distributions which are apparent in the samples.

4.4. Correlations

It is clear from the Figs. 11 and 12 that often the data along the x-axis are not fully converged
yet in time. However, we know (see Brenner, 1980) that the asymptotic behavior of the second
moment should be of the general form

D�
xðtÞ ¼ D�

x1ð1� ke�t=T Þ ð44Þ

This form was fit to the experimental data along the x-axis by using the Levenberg–Marquardt
method as described by Press et al. (1992). It is seen in Figs. 11 and 12 that the proposed formula
represents very well the time evolution of D�

x .
The most complete analysis has been performed for the sample Saga 1865. Some values are

missing which correspond to the cases where the computations have not been long enough to
converge sufficiently well, a situation which occurs quite often for Pe ¼ 100, especially when
Sw ¼ 0:2.

Then these asymptotic values are successfully analyzed as functions of Pe and Sw. The re-
gressions as functions of Pe are performed first and they are illustrated in Fig. 13. The values of D�

x
based on the last calculated values by means of Eq. (42) have also been displayed in this figure for
sake of completeness; this gives an estimate of the errors made in the determination of D�

x ; in most
cases, the values are in quite good agreement and in the rest of this paper we shall only use the
values based on Eq. (44). Generally speaking, the correlation by a power law is a good ap-
proximation to the results and a least-square fit of D�

x was systematically performed.
The same work was done on the transversal coefficients D�

y and D�
z ; some of them are displayed

in Fig. 14. Note that it is useless to use the regression technique Eq. (44) in these cases since the
asymptotic regime is always reached.

Again a power law appears to be adequate to fit the results. An interesting feature which arises
from a comparison between the data is that the transversal coefficients do not depend on satu-
ration. This dependence of the dispersion tensor as a power law of the P�eeclet number is not
surprising since it is in this way that most data are analyzed in the literature (as reported by Adler
et al. (1990) and by Sall�ees et al. (1993)).
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Finally, D�
x is represented as a function of saturation in Fig. 15, when the other parameters are

kept fixed. Again a power law appears to represent the experimental results reasonably well; in all
cases where the calculations are satisfactorily converged, it is a decreasing function of Sw; the
exponent depends on the P�eeclet number and on the partition coefficient K. It should be empha-
sized that there is no theoretical justification behind this representation of dispersion as a power
law of saturation. It can be simply taken as a convenient way of summarizing the results over the
interval of saturations which were studied here.

When all the regressions are made, the data for the sample Saga 1865 can be summarized by
two series of relations. The first one is based on Eq. (42) with an average over the last values

D�
x=D � 10S�0:55

w Pe1:24 for K ¼ 10 ð45aÞ

D�
x=D � 3S�0:85

w Pe1:27 for K ¼ 1 ð45bÞ

D�
x=D � 5S�0:65

w Pe1:21 for K ¼ 0:1 ð45cÞ

D�
y=D � Pe0:96 and D�

z=D � Pe0:60 ð45dÞ

Fig. 13. Longitudinal dispersion coefficients (x-axis) normalized by D as functions of P�eeclet number in the sample Saga

1865. Conventions are: K ¼ 0:1 ( ), K ¼ 1 ( ), K ¼ 10 ( ). The solid lines correspond to the last calculated values (42)

and the broken lines to the least square fit (44).
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The other relations are based on the least-square fit of Eq. (44)

D�
x=D � 12S�0:75

w Pe1:27 for K ¼ 10 ð46aÞ

D�
x=D � 3S�1:0

w Pe1:27 for K ¼ 1 ð46bÞ

D�
x=D � 5S�0:45

w Pe1:28 for K ¼ 0:1 ð46cÞ

As a general comment, these correlations should not be used out of the variable intervals where
they were established. For instance, the fact that D� diverges when Sw tends towards 0 should be
taken with care, though it might not be without any physical justification as we shall see below.

First, the correlations obtained in one way or another are not very different in most cases; the
transversal coefficients are always well converged and do not necessitate any extrapolation by Eq.
(44). Moreover, the exponent of the P�eeclet number for the longitudinal component D�

x does not
depend on the partition coefficient; it is by the way quite close to the standard values in single
phase flow (cf. for instance the references gathered in Adler (1992)); however, the coefficient in
front of the law depends on K.

Fig. 14. Transversal dispersion coefficients (y- and z-axes) normalized by D as functions of P�eeclet number in the sample

Saga 1865. Conventions are: K ¼ 0:1 ( ), K ¼ 1 ( ), K ¼ 10 ( ). Data are based on the last calculated values (42).
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An interesting feature is the dependence on Sw which is itself influenced by K. For small K, the
solute is mostly in water which is close to the wall because of wettability. For large values of K, the
opposite happens.

Let us focus our attention on the region at low saturation. On one hand, the numerical results
indicate that D�

x diverges; this might be qualitatively explained by the fact that when Sw tends
towards 0, Krw is almost zero which means that water is almost motionless and that it still contains
particles; hence, dispersion increases when Sw goes to zero.

However, the experiments of Delshad et al. (1985) and of Salter and Mohanty (1982) show that
as the wetting-phase saturation decreases, the dispersion coefficients first increase and reach a
maximum and then decrease. This does not agree with our calculations; this effect might be due to
the fact that the numerical tracer is always partitioning; hence, one expects different effects for
K ¼ 0 and 1.

Finally, one could note that one does not expect a symmetrical situation when Sw ! 1 since
according to Table 4, Kro does not go to zero in this limit. This difference is due to the fact that
water is the wetting phase.

Fig. 15. Longitudinal dispersion coefficients (x-axis) normalized by D as functions of Sw in the sample Saga 1865.

Conventions are: K ¼ 0:1 ( ), K ¼ 1 ( ), K ¼ 10 ( ). The solid lines correspond to the last calculated values (42) and

the broken lines to the least square fit (44).
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The results relative to the transversal components present some more simple features since they
depend neither on K, nor on Sw; the exponents are different probably because of the anisotropic
character of the finite reconstructed sample, but again they are of the same order of magnitude as
the single phase flow ones.

Another way of analyzing D�
x was tried by performing first a regression on Sw, second on Pe and

third on K. One obtains

D�
x=D � 2:4 K0:6S�0:6Pe0:3

w Pe0:054K ð47Þ

This formula is impressive in the sense that it is unique for all the parameters which were studied,
but it should be exclusively used in the range where it has been established. Formulae (45a)–(46c)
seem preferable to us since the dependence in terms of the P�eeclet number is similar to the one
obtained in single phase flow which is not true for Eq. (47).

Let us now consider the results obtained for Statoil sd. It should be noted that the range of
parameters is also different and more restricted than in the previous situation. Here, the partition
coefficient K is equal to 0.1, but the P�eeclet number is equal to 1, 10 and 100. The new case Pe ¼ 1
was investigated for sake of completeness only. In addition to the comments which were made in
the previous section, it is interesting to note that the longitudinal dispersion for Pe ¼ 1 is much
faster in steady state than for the two other values.

The regression analysis for the dispersion coefficients is summarized in Fig. 16. One can get the
following correlations for K ¼ 0:1. Again the first ones are obtained by means of an averaging
over the last values (42)

D�
x=D � 0:61S�0:21

w Pe1:22 ð48aÞ

D�
y=D � S1:3

w Pe0:8 and D�
z=D � S�0:8

w Pe0:9 ð48bÞ

The last one is obtained by means of Eq. (44)

D�
x=D � 0:59S�0:30

w Pe1:27 ð49Þ

These results are interesting for themselves, but they are also interesting by comparison with the
previous ones gathered in Eqs. (46a)–(46c). As discussed at the beginning of Section 4.3, the
geometry of the sample is expected to have an influence on the dispersion tensor. It is seen that for
the same value K ¼ 0:1, the influence of saturation is different in both cases. More precisely, the
dependence on the P�eeclet number remains more or less the same (again very close to the classical
values obtained in single phase), while the influence of saturation is drastic. This could be ex-
plained in the following way. K ¼ 0:1 corresponds to the case where most of the particles are in
the water which is recalled to be the wetting phase. As shown in Table 2, the permeability ratio
Ko=Kw is considerably larger for sa1865 than for sd. Hence, it was expected that dispersion is much
larger in the Saga sample; Figs. 13 and 16a show that this is indeed the case. Hence, the sample
itself has a crucial influence on the result.

Finally, it is tempting to compare the results obtained here to the ones derived in networks.
Sahimi and Imdakm (1988) proposed power laws for the longitudinal dispersion as a function of
the water saturation. The physical situations are actually very different. First, it is not meaningful
in our computations to speak of drainage or imbibition since the saturations are fixed at the
beginning and do not change with time. Second, our calculations are made over a wide range of
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saturations (most of them far from the percolation threshold); hence, we do not expect our results
to be representative of the fractal behavior which is believed to hold close to percolation.
Moreover, the studied geometries are extremely different; here, a detailed view of a few pores is
given while networks present a view on the porous medium at a relatively large scale where the
accent is put on the immobile phase. Hence, it is not a surprise that the results are different in both
simulations.

5. Concluding remarks

The dispersion tensor has been evaluated for two samples for a number of values of the major
physical parameters. The proposed correlations can be possibly used in the large scale simulators
at the reservoir scale which are employed in the oil industry. Other applications in Chemical
Engineering can also be envisioned.

This work can be extended in many ways. One of the most important parameters which has not
been varied is wettability; as seen even in the case of a simple Poiseuille flow, the influence of

Fig. 16. Dispersion coefficients along the x-, y- and z-axes normalized by D as functions of P�eeclet number in the sample

Statoil sd in (a)–(c). Conventions are: Sw ¼ 60% ( ), Sw ¼ 50% ( ), Sw ¼ 40% (+) and Sw ¼ 20% ( ). In (d), the

longitudinal dispersion coefficients (x-axis) normalized by D as functions of Sw in the sample Statoil sd; conventions are:

Pe ¼ 100 ( ), Pe ¼ 10 ( ) and Pe ¼ 1 (+). The solid lines correspond to the last calculated values (42), and the broken

lines to the least square fit (44). Data are for K ¼ 0:1.
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saturation may yield an increase or a decrease of dispersion and is likely to be strongly influenced
by wettability.

Another important extension is when the solute is not passive, but can, for instance, interact
with the walls. Such a study will be performed in a near future.
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Appendix A

The coefficient Fd can be expressed by the following chain of formulae:

M ¼ lw

lo

D ¼ Do

Dw

ð50Þ

B ¼ DðKSo þ SwÞ2

KDSo þ Sw
KMS2
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o

�
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